Войти

Авторизация

Имя пользователя
Пароль *
Запомнить меня

Краткий конспект подготовки к ЗНО по биологии №40 "Наследственность и изменчивость. Закономерности наследственности"

Подготовка к ЗНО. Биология.
Конспект 40. Наследственность и изменчивость. Закономерности наследственности

 

Генетика – наука о закономерностях наследственности и изменчивости. Наследственность – свойство организмов передавать свои признаки от одного поколения к другому.
Изменчивость – свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.
Признак – любая особенность строения, любое свойство организма.
Фенотип – совокупность всех внешних и внутренних признаков организма.
Ген – функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК.
Генотип – совокупность генов организма.
Локус – местоположение гена в хромосоме.
Аллельные гены – гены, расположенные в идентичных локусах гомологичных хромосом.
Гомозигота – организм, имеющий аллельные гены одной молекулярной формы.
Гетерозигота – организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой – рецессивным.
Рецессивный ген – аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.
Доминантный ген – аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

 

Методы генетики

  Основным является гибридологический метод – система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар – дигибридным, нескольких пар – полигибридным. Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак – цвет горошин, альтернативные признаки – желтый цвет, зеленый цвет горошин.
Также используют: генеалогический – составление и анализ родословных; цитогенетический – изучение хромосом; близнецовый – изучение близнецов; популяционно-статистический метод – изучение генетической структуры популяций.

 

Генетическая символика

  Предложена Г. Менделем, используется для записи результатов скрещиваний:

Р – родители;

F – потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1 – гибриды первого поколения – прямые потомки родителей, F2 – гибриды второго поколения – возникают в результате скрещивания между собой гибридов F1);

× – значок скрещивания;

G – мужская особь;

E – женская особь;

A – доминантный ген,

а – рецессивный ген;

АА – гомозигота по доминанте,

аа – гомозигота по рецессиву,

Аа – гетерозигота.

 

Закономерности наследования, установленные Менделем

1. Закон единообразия гибридов первого поколения, или первый закон Менделя
  При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.
2. Закон расщепления, или второй закон Менделя
  При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.
   Закон чистоты гамет
  Находящиеся в каждом организме пары наследственных факторов не смешиваются и не сливаются и при образовании гамет по одному из каждой пары переходят в них в чистом виде: одни гаметы несут доминантный ген, другие – рецессивный. Гаметы никогда не бывают гибридными по данному признаку.
Анализирующее скрещивание – скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву. Один из методов определения генотипа.

3. Закон независимого комбинирования (наследования) признаков, или третий закон Менделя
При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

 

Сцепленное наследование

Группа сцепления – гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.
Сцепленное наследование – наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот.

Полное сцепление – разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным.

Неполное сцепление – разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.
Независимое наследование – наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.
Некроссоверные гаметы – гаметы, в процессе образования которых кроссинговер не произошел.
Кроссоверные гаметы – гаметы, в процессе образования которых произошел кроссинговер. Как правило, кроссоверные гаметы составляют небольшую часть от всего количества гамет.
Нерекомбинанты – гибридные особи, у которых такое же сочетание признаков, как и у родителей.
Рекомбинанты – гибридные особи, имеющие иное сочетание признаков, чем у родителей.
  Расстояние между генами измеряется в морганидах – условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов.

 

Хромосомная теория наследственности Т. Моргана

1. Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
3. гены расположены в хромосомах в определенной линейной последовательности;
4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
6. каждый вид имеет характерный только для него набор хромосом – кариотип.

 

Хромосомное определение пола

  Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов  аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга  половые хромосомы.
Пол, у которого образуются гаметы одного типа, несущие Х-хромосому, называется гомогаметным (женский пол у человека), разного типа, несущие или Х или Y – гетерогаметным (мужской у человека).
У животных можно выделить следующие четыре типа хромосомного определения пола.
1. Женский пол  гомогаметен (ХХ), мужской  гетерогаметен (ХY) (млекопитающие, в частности, человек, дрозофила).
2. Женский пол  гомогаметен (ХХ), мужской  гетерогаметен (Х0) (прямокрылые).
3. Женский пол  гетерогаметен (ХY), мужской  гомогаметен (ХХ) (птицы, пресмыкающиеся).
4. Женский пол  гетерогаметен (Х0), мужской  гомогаметен (ХХ) (некоторые виды насекомых).
Реципрокное скрещивание  два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании.
  Большинство генов, сцепленных с Х-хромосомой, отсутствуют в Y-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных.
  В зависимости от локализации гена в половых хромосомах выделяют следующие типы наследования:
1. Х-сцепленный рецессивный,
2. Х-сцепленный доминантный,
3. Х-Y-сцепленный (частично сцепленный с полом),
4. Y-сцепленный.

 

Взаимодействие аллельных генов

Один и тот же ген может оказывать влияние на развитие нескольких признаков; один и тот же признак может развиваться под влиянием многих генов.
  Различают полное доминирование, неполное доминирование, кодоминирование, аллельное исключение.
Аллельными генами называются гены, расположенные в идентичных локусах гомологичных хромосом. Если ген имеет три и более молекулярных форм, говорят о множественном аллелизме. Из всего множества молекулярных форм у одного организма могут присутствовать только две, что объясняется парностью хромосом.
Полное доминирование  это вид взаимодействия аллельных генов, при котором фенотип гетерозигот не отличается от фенотипа гомозигот по доминанте, то есть в фенотипе гетерозигот присутствует продукт доминантного гена.
Неполное доминирование – вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву и имеет среднее (промежуточное) значение между ними.
Кодоминирование  вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву, и в фенотипе гетерозигот присутствуют продукты обоих генов.
Аллельным исключением называется отсутствие или инактивация одного из пары генов; в этом случае в фенотипе присутствует продукт другого гена (гемизиготность, делеция, гетерохроматизация участка хромосомы, в котором находится нужный ген).

 

Взаимодействие неаллельных генов

Неаллельные гены  гены, расположенные или в неидентичных локусах гомологичных хромосом, или в разных парах гомологичных хромосом.
Комплементарность  вид взаимодействия неаллельных генов, при котором признак формируется в результате суммарного сочетания продуктов их доминантных аллелей.
Эпистаз  вид взаимодействия неаллельных генов, при котором одна пара генов подавляет (не дает проявиться в фенотипе) другую пару генов. Ген-подавитель называют эпистатичным (эпистатическим), подавляемый ген  гипостатичным (гипостатическим). Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I (i).
  Если эпистатичный ген  доминантный, то эпистаз также называется доминантным. Расщепление по фенотипу при доминантном эпистазе может идти в отношении 12:3:1, 13:3, 7:6:3. Если эпистатичный ген  рецессивный, то эпистаз называется рецессивным, и в этом случае расщепление по фенотипу может быть 9:3:4, 9:7, 13:3.
Полимерия – вид взаимодействия двух и более пар неаллельных генов, доминантные аллели которых однозначно влияют на развитие одного и того же признака. При кумулятивной полимерии интенсивность значения признака зависит от суммирующего действия генов: чем больше доминантных аллелей, тем больше степень выраженности признака. При некумулятивной полимерии количество доминантных аллелей на степень выраженности признака не влияет, и признак проявляется при наличии хотя бы одного из доминантных аллелей. Полимерные гены обозначаются одной буквой, аллели одного локуса имеют одинаковый цифровой индекс, например А1а1А2а2А3а3.
Плейотропия  множественное действие генов. Плейотропное действие генов имеет биохимическую природу: один белок-фермент, образующийся под контролем одного гена, определяет не только развитие данного признака, но и воздействует на вторичные реакции биосинтеза других признаков и свойств, вызывая их изменение.

Онлайн-тест подготовки к ЗНО по биологии №40 "Генетика"

Новости

Колектив Освітнього порталу "Внешколы" щиро вітає усіх освітян з Днем учителя! Шановні учителі, дякуємо Вам за вашу важливу і складну...
С праздником Первого сентября, Днем знаний!Уважаемые ученики, абитуриенты, учителя, преподаватели и все-все, кто стремится к знаниям, мы желаем Вам успехов...

Топ-10

Постмайданное образование Вот уже в четвёртый раз мы составляем рейтинг школ Харькова по результатам сдачи внешнего независимого оценивания (ВНО или...

© 2013-2016, All rights reserved. Образовательный портал "ВнеШколы"